The Linux SCSI programming HOWTO

Table of Contents

nux SCSI programming HOWTO	
Heiko Eißfeldt heiko@colossus.escape.de.	
<u>1.What's New?</u> 2.Introduction	
3.What Is The Generic SCSI Interface?	
4.What Are The Requirements To Use It?	
5.Programmers Guide	
6.0verview Of Device Programming	
7.0pening The Device	
8. The Header Structure.	
9.Inquiry Command Example.	
10.The Sense Buffer	
11.Example Using Sense Buffer.	
12.Ioctl Functions	
13.Driver Defaults	
14.Obtaining The Scsi Specifications	
15.Related Information Sources.	
16.Other useful stuff	
17.Other SCSI Access Interfaces	
18.Final Comments	
19.Acknowledgments.	
Appendix	
20.Appendix	
21.Error handling	
22.Additional sense codes and additional sense code qualifiers	
23.A SCSI command code quick reference.	
24.Example programs	
1.What's New?	
2.Introduction	
3.What Is The Generic SCSI Interface?	
4.What Are The Requirements To Use It?	
4.1 Kernel Configuration	
4.2 Device Files.	
<u>4.3 Device Mapping</u>	
Dynamically insert and remove SCSI devices	
5.Programmers Guide	
6.Overview Of Device Programming	
7.Opening The Device.	
8.The Header Structure	
9.Inquiry Command Example.	
10.The Sense Buffer	
11.Example Using Sense Buffer.	
12.Ioctl Functions.	
13.Driver Defaults.	
13.1 Transfer Lengths.	
13.2 Timeout And Retry Values	
14.Obtaining The Scsi Specifications	

Table of Contents

15.Related Information Sources.	19
15.1 HOWTOs and FAOs.	19
15.2 Mailing list	19
15.3 Example code	20
16.Other useful stuff	
16.1 Device driver writer helpers.	20
16.2 Utilities.	
17.Other SCSI Access Interfaces	21
18.Final Comments	21
19.Acknowledgments.	22
20.Appendix	22
21.Error handling	22
21.1 Error status decoding	23
21.2 Status codes.	23
21.3 SCSI Sense Keys.	
21.4 Host codes	27
21.5 Driver codes	27
22.Additional sense codes and additional sense code qualifiers	
22.1 ASC and ASCQ in lexical order.	
22.2 ASC and ASCQ in numerical order.	32
23.A SCSI command code quick reference.	
24.Example programs	42

The Linux SCSI programming HOWTO

Heiko Eißfeldt heiko@colossus.escape.de

v1.5, 7 May 1996

This document deals with programming the Linux generic SCSI interface.

1.What's New?

2.Introduction

3. What Is The Generic SCSI Interface?

4. What Are The Requirements To Use It?

- <u>4.1 Kernel Configuration</u>
- <u>4.2 Device Files</u>
- <u>4.3 Device Mapping</u>

5. Programmers Guide

- 6. Overview Of Device Programming
- 7. Opening The Device

8. The Header Structure

- 9. Inquiry Command Example
- 10. The Sense Buffer
- 11. Example Using Sense Buffer
- 12.loctl Functions

13. Driver Defaults

- <u>13.1 Transfer Lengths</u>
- <u>13.2 Timeout And Retry Values</u>

14. Obtaining The Scsi Specifications

15.<u>Related Information Sources</u>

- 15.1 HOWTOs and FAQs
- <u>15.2 Mailing list</u>
- <u>15.3 Example code</u>

16. Other useful stuff

- <u>16.1 Device driver writer helpers</u>
- <u>16.2 Utilities</u>

17. Other SCSI Access Interfaces

18. Final Comments

19. Acknowledgments

Appendix

20. Appendix

21. Error handling

- <u>21.1 Error status decoding</u>
- <u>21.2 Status codes</u>
- <u>21.3 SCSI Sense Keys</u>
- <u>21.4 Host codes</u>
- <u>21.5 Driver codes</u>

22.<u>Additional sense codes and additional sense code</u> <u>qualifiers</u>

- 22.1 ASC and ASCQ in lexical order
- <u>22.2 ASC and ASCQ in numerical order</u>

23. A SCSI command code quick reference

24. Example programs

1. What's New?

Newer kernels have changed the interface a bit. This affects a section formerly entitled 'rescanning the devices'. Now it is possible to add/remove SCSI devices on the fly.

Since kernel 1.3.98 some important header files have been moved/split (sg.h and scsi.h).

Some stupid bugs have been replaced by newer ones.

2.Introduction

This document is a guide to the installation and programming of the Linux generic SCSI interface.

It covers kernel prerequisites, device mappings, and basic interaction with devices. Some simple C programming examples are included. General knowledge of the SCSI command set is required; for more information on the SCSI standard and related information, see the appendix to this document.

Note the plain text version of this document lacks cross references (they show up as ``").

3. What Is The Generic SCSI Interface?

The generic SCSI interface has been implemented to provide general SCSI access to (possibly exotic) pieces of SCSI hardware. It was developed by Lawrence Foard (entropy@world.std.com) and sponsored by Killy Corporation (see the comments in scsi/sg.h).

The interface makes special device handling possible from user level applications (i.e. outside the kernel). Thus, kernel driver development, which is more risky and difficult to debug, is not necessary.

However, if you don't program the driver properly it is possible to hang the SCSI bus, the driver, or the kernel. Therefore, it is important to properly program the generic driver and to first back up all files to avoid losing data. Another useful thing to do before running your programs is to issue a sync command to ensure that any buffers are flushed to disk, minimizing data loss if the system hangs.

Another advantage of the generic driver is that as long as the interface itself does not change, all applications are independent of new kernel development. In comparison, other low–level kernel drivers have to be synchronized with other internal kernel changes.

Typically, the generic driver is used to communicate with new SCSI hardware devices that require special user applications to be written to take advantage of their features (e.g. scanners, printers, CD–ROM jukeboxes). The generic interface allows these to be written quickly.

4. What Are The Requirements To Use It?

4.1 Kernel Configuration

You must have a supported SCSI controller, obviously. Furthermore, your kernel must have controller support as well as generic support compiled in. Configuring the Linux kernel (via make config under /usr/src/linux) typically looks like the following:

```
*
*
* SCSI support
*
SCSI support? (CONFIG_SCSI) [n] y
*
*
* SCSI support type (disk, tape, CDrom)
*
...
Scsi generic support (CONFIG_CHR_DEV_SG) [n] y
*
* SCSI low-level drivers
*
...
```

If available, modules can of course be build instead.

4.2 Device Files

The generic SCSI driver uses its own device files, separate from those used by the other SCSI device drivers. They can be generated using the MAKEDEV script, typically found in the /dev directory. Running MAKEDEV sg produces these files:

Crw	1 root	system	21,	0 Aug 20 20:09 /dev/sga
Crw	1 root	system	21,	1 Aug 20 20:09 /dev/sgb
Crw	1 root	system	21,	2 Aug 20 20:09 /dev/sgc
Crw	1 root	system	21,	3 Aug 20 20:09 /dev/sgd
Crw	1 root	system	21,	4 Aug 20 20:09 /dev/sge
Crw	1 root	system	21,	5 Aug 20 20:09 /dev/sgf
Crw	1 root	system	21,	6 Aug 20 20:09 /dev/sgg
crw	1 root	system	21,	7 Aug 20 20:09 /dev/sgh
			major,	minor device numbers

Note that these are character devices for raw access. On some systems these devices may be called /dev/{sg0,sg1,...}, depending on your installation, so adjust the following examples accordingly.

4.3 Device Mapping

These device files are dynamically mapped to SCSI id/LUNs on your SCSI bus (LUN = logical unit). The mapping allocates devices consecutively for each LUN of each device on each SCSI bus found at time of the SCSI scan, beginning at the lower LUNs/ids/buses. It starts with the first SCSI controller and continues without interruption with all following controllers. This is currently done in the initialisation of the SCSI driver.

For example, assuming you had three SCSI devices hooked up with ids 1, 3, and 5 on the first SCSI bus (each having one LUN), then the following mapping would be in effect:

/dev/sga -> SCSI id 1 /dev/sgb -> SCSI id 3 /dev/sgc -> SCSI id 5

If you now add a new device with id 4, then the mapping (after the next rescan) will be:

/dev/sga -> SCSI id 1 /dev/sgb -> SCSI id 3 /dev/sgc -> SCSI id 4 /dev/sgd -> SCSI id 5

Notice the change for id 5 — the corresponding device is no longer mapped to /dev/sgc but is now under /dev/sgd.

Luckily newer kernels allow for changing this order.

Dynamically insert and remove SCSI devices

If a newer kernel and the /proc file system is running, a non-busy device can be removed and installed 'on the fly'.

To remove a SCSI device:

echo "scsi remove-single-device a b c d" > /proc/scsi/scsi

and similar, to add a SCSI device, do

echo "scsi add-single-device a b c d" > /proc/scsi/scsi

where

4.3 Device Mapping

a == hostadapter id (first one being 0) b == SCSI channel on hostadapter (first one being 0) c == ID d == LUN (first one being 0)

So in order to swap the /dev/sgc and /dev/sgd mappings from the previous example, we could do

echo "scsi remove-single-device 0 0 4 0" > /proc/scsi/scsi echo "scsi remove-single-device 0 0 5 0" > /proc/scsi/scsi echo "scsi add-single-device 0 0 5 0" > /proc/scsi/scsi echo "scsi add-single-device 0 0 4 0" > /proc/scsi/scsi

since generic devices are mapped in the order of their insertion.

When adding more devices to the scsi bus keep in mind there are limited spare entries for new devices. The memory has been allocated at boot time and has room for 2 more devices.

5. Programmers Guide

The following sections are for programmers who want to use the generic SCSI interface in their own applications. An example will be given showing how to access a SCSI device with the INQUIRY and the TESTUNITREADY commands.

When using these code examples, note the following:

- the location of the header files sg.h and scsi.h has changed in kernel version 1.3.98. Now these files are located at /usr/src/linux/include/scsi, which is hopefully linked to /usr/include/scsi. Previously they were in /usr/src/linux/drivers/scsi. We assume a newer kernel in the following text.
- the generic SCSI interface was extended in kernel version 1.1.68; the examples require at least this version. But please avoid kernel version 1.1.77 up to 1.1.89 and 1.3.52 upto 1.3.56 since they had a broken generic scsi interface.
- the constant DEVICE in the header section describing the accessed device should be set according to your available devices (see section <u>sec-header</u>.

6. Overview Of Device Programming

The header file include/scsi/sg.h contains a description of the interface (this is based on kernel version 1.3.98):

This structure describes how a SCSI command is to be processed and has room to hold the results of the execution of the command. The individual structure components will be discussed later in section <u>sec-header</u>.

The general way of exchanging data with the generic driver is as follows: to send a command to an opened generic device, write() a block containing these three parts to it:

struct sg_header SCSI command data to be sent with the command

To obtain the result of a command, read() a block with this (similar) block structure:

struct sg_header
data coming from the device

This is a general overview of the process. The following sections describe each of the steps in more detail.

NOTE: Up to recent kernel versions, it is necessary to block the SIGINT signal between the write() and the corresponding read() call (i.e. via sigprocmask()). A return after the write() part without any read() to fetch the results will block on subsequent accesses. This signal blocking has not yet been included in the example code. So better do not issue SIGINT (a la ^C) when running these examples.

7. Opening The Device

A generic device has to be opened for read and write access:

int fd = open (device_name, O_RDWR);

(This is the case even for a read-only hardware device such as a cdrom drive).

We have to perform a write to send the command and a read to get back any results. In the case of an error the return code is negative (see section <u>sec-errorhandling</u> for a complete list).

8. The Header Structure

The header struct sg_header serves as a controlling layer between the application and the kernel driver. We now discuss its components in detail.

int pack_len

defines the size of the block written to the driver. This is defined within the kernel for internal use.

int reply_len

defines the size of the block to be accepted at reply. This is defined from the application side.

int pack_id

This field helps to assign replies to requests. The application can supply a unique id for each request. Suppose you have written several commands (say 4) to one device. They may work in parallel, one being the fastest. When getting replies via 4 reads, the replies do not have to have the order of the requests. To identify the correct reply for a given request one can use the pack_id field. Typically its value is incremented after each request (and wraps eventually). The maximum amount of outstanding requests is limited by the kernel to SG_MAX_QUEUE (eg 4).

int result

the result code of a read or write call. This is (sometimes) defined from the generic driver (kernel) side. It is safe to set it to null before the write call. These codes are defined in errno.h (0 meaning no error).

unsigned int twelve_byte:1

This field is necessary only when using non-standard vendor specific commands (in the range 0xc0 - 0xff). When these commands have a command length of 12 bytes instead of 10, this field has to be set to one before the write call. Other command lengths are not supported. This is defined from the application side.

unsigned char sense_buffer[16]

This buffer is set after a command is completed (after a read() call) and contains the SCSI sense code. Some command results have to be read from here (e.g. for TESTUNITREADY). Usually it contains just zero bytes. The value in this field is set by the generic driver (kernel) side.

The following example function interfaces directly with the generic kernel driver. It defines the header structure, sends the command via write, gets the result via read and does some (limited) error checking. The sense buffer data is available in the output buffer (unless a NULL pointer has been given, in which case it's in the input buffer). We will use it in the examples which follow.

Note: Set the value of DEVICE to your device descriptor.

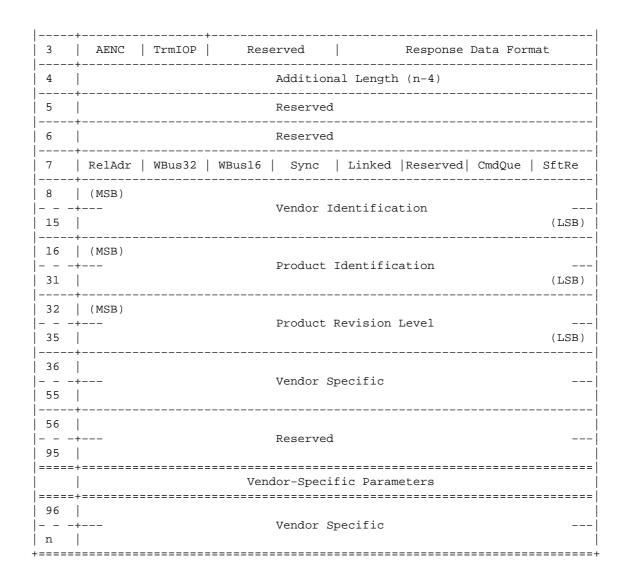
```
#define DEVICE "/dev/sqc"
/* Example program to demonstrate the generic SCSI interface */
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <scsi/sg.h>
#define SCSI OFF sizeof(struct sq header)
static unsigned char cmd[SCSI_OFF + 18]; /* SCSI command buffer */
int fd;
                                /* SCSI device/file descriptor */
/* process a complete SCSI cmd. Use the generic SCSI interface. */
)
{
   int status = 0;
   struct sg_header *sg_hd;
   /* safety checks */
   if (!cmd_len) return -1;
                                  /* need a cmd_len != 0 */
                                   /* need an input buffer != NULL */
   if (!i_buff) return -1;
#ifdef SG_BIG_BUFF
   if (SCSI_OFF + cmd_len + in_size > SG_BIG_BUFF) return -1;
```

```
if (SCSI_OFF + out_size > SG_BIG_BUFF) return -1;
#else
    if (SCSI_OFF + cmd_len + in_size > 4096) return -1;
    if (SCSI_OFF + out_size > 4096) return -1;
#endif
    if (!o_buff) out_size = 0; /* no output buffer, no output size */
    /* generic SCSI device header construction */
    sg_hd = (struct sg_header *) i_buff;
    sg_hd->reply_len = SCSI_OFF + out_size;
    sq_hd->twelve_byte = cmd_len == 12;
    sg_hd->result = 0;
#if
        0
    sg_hd->pack_len = SCSI_OFF + cmd_len + in_size; /* not necessary */
sg_hd->pack_id; /* not used */
    sg_hd->other_flags; /* not used */
#endif
    /* send command */
    status = write( fd, i_buff, SCSI_OFF + cmd_len + in_size );
    if ( status < 0 || status != SCSI_OFF + cmd_len + in_size ||
                          sg_hd->result ) {
         /* some error happened */
         fprintf( stderr, "write(generic) result = 0x%x cmd = 0x%x\n",
                       sg_hd->result, i_buff[SCSI_OFF] );
         perror("");
         return status;
    }
                                             /* buffer pointer check */
    if (!o_buff) o_buff = i_buff;
    /* retrieve result */
    status = read( fd, o_buff, SCSI_OFF + out_size);
    if ( status < 0 || status != SCSI_OFF + out_size || sg_hd->result ) {
         /* some error happened */
         fprintf( stderr, "read(generic) status = 0x%x, result = 0x%x, "
                             "cmd = 0x x n",
                             status, sg_hd->result, o_buff[SCSI_OFF] );
         fprintf( stderr, "read(generic) sense "
                   sg_hd->sense_buffer[0], sg_hd->sense_buffer[2], sg_hd->sense_buffer[4], sg_hd->sense_buffer[6], sg_hd->sense_buffer[6], sg_hd->sense_buffer[8], sg_hd->sense_buffer[10], sg_hd->sense_buffer[10], sg_hd->sense_buffer[12], sg_hd->sense_buffer[12], sg_hd->sense_buffer[12], sg_hd->sense_buffer[13], sg_hd->sense_buffer[14], sg_hd->sense_buffer[15]);
         if (status < 0)
             perror("");
    }
    /* Look if we got what we expected to get */
    if (status == SCSI_OFF + out_size) status = 0; /* got them all */
    return status; /* 0 means no error */
}
```

While this may look somewhat complex at first appearance, most of the code is for error checking and reporting (which is useful even after the code is working).

Handle_SCSI_cmd has a generalized form for all SCSI commands types, falling into each of these categories:

Data Mode	Example Command
neither input nor output data	test unit ready
no input data, output data	inquiry, read
input data, no output data	mode select, write
input data, output data	mode sense


9. Inquiry Command Example

One of the most basic SCSI commands is the INQUIRY command, used to identify the type and make of the device. Here is the definition from the SCSI-2 specification (for details refer to the SCSI-2 standard).

				Table	e 44: INQU	IRY Comm					
	Bit Byte	7	6 	 5 	4	3 	2 	1 		0	-
	0				Operatio	n Code (12h)				
	1	Logical	Unit Numl	ber			Reserv	ed		EVPD	
	2				Page Cod	e					
	3				Reserved						
	4				Allocati	-					
	5				Control						
											Τ'

The output data are as follows:

		Table 45	: Standard	I INQUIRY D	ata Format	-	
+===== Bit Byte	-======== 7 +	=========== 6 5 		3	==-====================================	1 	=-====+ 0
=====	+=====================================		====+=====	Peri	pheral Dev	vice Type	
1	+ RMB		Devic	e-Type Mod	ifier		
2	ISO Versi	on	ECMA Ve	rsion	ANSI-	Approved V	Version

The next example uses the low-level function handle_SCSI_cmd to perform the Inquiry SCSI command.

We first append the command block to the generic header, then call handle_SCSI_cmd. Note that the output buffer size argument for the handle_SCSI_cmd call excludes the generic header size. After command completion the output buffer contains the requested data, unless an error occurred.

```
#define INQUIRY_CMD 0x12
#define INQUIRY_CMDLEN 6
#define INQUIRY_REPLY_LEN 96
#define INQUIRY_VENDOR 8 /* Offset in reply data to vendor name */
/* request vendor brand and model */
static unsigned char *Inquiry ( void )
{
    unsigned char Inqbuffer[ SCSI_OFF + INQUIRY_REPLY_LEN ];
    unsigned char cmdblk [ INQUIRY_CMDLEN ] =
        { INQUIRY_CMD, /* command */
            0, /* lun/reserved */
```

```
0, /* page code */
              0, /* reserved */
INQUIRY_REPLY_LEN, /* allocation length */
              0 };/* reserved/flag/link */
memcpy( cmd + SCSI_OFF, cmdblk, sizeof(cmdblk) );
/*
 * +----+
 * | struct sg_header | <- cmd
 * +----+
 * | copy of cmdblk | <- cmd + SCSI_OFF
 * +----+
 * /
if (handle_SCSI_cmd(sizeof(cmdblk), 0, cmd,
         sizeof(Inqbuffer) - SCSI_OFF, Inqbuffer )) {
   fprintf( stderr, "Inquiry failed\n" );
   exit(2);
}
return (Ingbuffer + SCSI_OFF);
```

The example above follows this structure. The Inquiry function copies its command block behind the generic header (given by SCSI_OFF). Input data is not present for this command. Handle_SCSI_cmd will define the header structure. We can now implement the function main to complete this working example program.

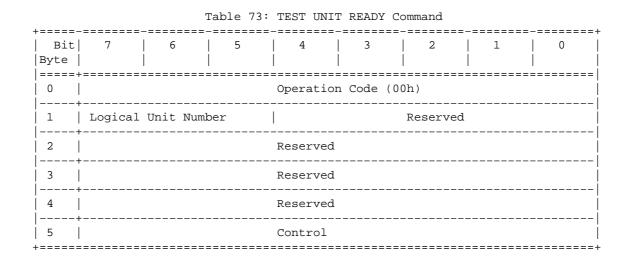
```
void main( void )
{
  fd = open(DEVICE, O_RDWR);
  if (fd < 0) {
    fprintf( stderr, "Need read/write permissions for "DEVICE".\n" );
    exit(1);
  }
  /* print some fields of the Inquiry result */
  printf( "%s\n", Inquiry() + INQUIRY_VENDOR );
}</pre>
```

We first open the device, check for errors, and then call the higher level subroutine. Then we print the results in human readable format including the vendor, product, and revision.

Note: There is more information in the Inquiry result than this little program gives. You may want to extend the program to give device type, ANSI version etc. The device type is of special importance, since it determines the mandatory and optional command sets for this device. If you don't want to program it yourself, you may want to use the scsiinfo program from Eric Youngdale, which requests nearly all information about an SCSI device. Look at tsx–11.mit.edu in pub/Linux/ALPHA/scsi.

}

10.<u>The Sense Buffer</u>


Commands with no output data can give status information via the sense buffer (which is part of the header structure). Sense data is available when the previous command has terminated with a CHECK CONDITION status. In this case the kernel automatically retrieves the sense data via a REQUEST SENSE command. Its structure is:

+===== Bit Byte	-======================================	-====== 6 	- === === 5 	-=	- 	-====== 2 	-======= 1 	-=======+ 0
0	Valid			Error Co	de (70h o:	======== r 71h)		======
				Segment 1	Number			
2	Filemark	EOM	 ILI	Reserved		Sense Ke	У	
3	(MSB)			Informat:				
6				IIIIOI Mat.				(LSB)
7				Additiona	al Sense I	Length (n	7)	
8	(MSB)			Commond				
				Command-	Specific	Informati	011	(LSB)
12				Additiona	al Sense (Code		
13				Additiona	al Sense (Code Qual	ifier	
14				Field Re	placeable	Unit Cod	e	
15	SKSV				ifi			
				Sense-Key	y Specifi	C		
18								
				Additiona	al Sense 1	вусеs		

Note: The most useful fields are Sense Key (see section <u>sec-sensekeys</u>), Additional Sense Code and Additional Sense Code Qualifier (see section <u>sec-sensecodes</u>). The latter two are used combined as a pair.

11. Example Using Sense Buffer

Here we will use the TEST UNIT READY command to check whether media is loaded into our device. The header declarations and function handle_SCSI_cmd from the inquiry example will be needed as well.

Here is the function which implements it:

```
#define TESTUNITREADY_CMD 0
#define TESTUNITREADY_CMDLEN 6
#define ADD_SENSECODE 12
#define ADD_SC_QUALIFIER 13
#define NO_MEDIA_SC 0x3a
#define NO_MEDIA_SCQ 0x00
int TestForMedium ( void )
ł
  /* request READY status */
 static unsigned char cmdblk [TESTUNITREADY_CMDLEN] = {
     TESTUNITREADY_CMD, /* command */
                     0, /* lun/reserved */
                     0, /* reserved */
                     0, /* reserved */
                     0, /* reserved */
                     0};/* control */
 memcpy( cmd + SCSI_OFF, cmdblk, sizeof(cmdblk) );
  /*
  * +----+
   * | struct sg_header | <- cmd
   * +----+
```

Combined with this main function we can do the check.

```
void main( void )
{
  fd = open(DEVICE, O_RDWR);
  if (fd < 0) {
    fprintf( stderr, "Need read/write permissions for "DEVICE".\n" );
    exit(1);
  }
  /* look if medium is loaded */
  if (!TestForMedium()) {
    printf("device is unloaded\n");
  } else {
    printf("device is loaded\n");
  }
}</pre>
```

The file generic_demo.c from the appendix contains both examples.

12.loctl Functions

There are two ioctl functions available:

- ioctl(fd, SG_SET_TIMEOUT, &Timeout); sets the timeout value to Timeout * 10 milliseconds. Timeout has to be declared as int.
- ioctl(fd, SG_GET_TIMEOUT, &Timeout); gets the current timeout value. Timeout has to be declared as int.

13. Driver Defaults

13.1 Transfer Lengths

Currently (at least up to kernel version 1.1.68) input and output sizes have to be less than or equal than 4096 bytes unless the kernel has been compiled with SG_BIG_BUFF defined, if which case it is limited to SG_BIG_BUFF (e.g. 32768) bytes. These sizes include the generic header as well as the command block on input. SG_BIG_BUFF can be safely increased upto (131072 – 512). To take advantage of this, a new kernel has to be compiled and booted, of course.

13.2 Timeout And Retry Values

The default timeout value is set to one minute (Timeout = 6000). It can be changed through an ioctl call (see section <u>sec-ioctl</u>). The default number of retries is one.

14. Obtaining The Scsi Specifications

There are standards entitled SCSI-1 and SCSI-2 (and possibly soon SCSI-3). The standards are mostly upward compatible.

The SCSI–1 standard is (in the author's opinion) mostly obsolete, and SCSI–2 is the most widely used. SCSI–3 is very new and very expensive. These standardized command sets specify mandatory and optional commands for SCSI manufacturers and should be preferred over the vendor specific command extensions which are not standardized and for which programming information is seldom available. Of course sometimes there is no alternative to these extensions.

Electronic copies of the latest drafts are available via anonymous ftp from:

- ftp.cs.tulane.edu:pub/scsi
- ftp.symbios.com:/pub/standards
- ftp.cs.uni-sb.de:/pub/misc/doc/scsi

(I got my SCSI specification from the Yggdrasil Linux CD–ROM in the directory /usr/doc/scsi–2 and /usr/doc/scsi–1).

The SCSI FAQ also lists the following sources of printed information:

The SCSI specification: Available from:

Global Engineering Documents

15 Inverness Way East Englewood Co 80112-5704 (800) 854-7179 SCSI-1: X3.131-1986 SCSI-2: X3.131-199x SCSI-3 X3T9.2/91-010R4 Working Draft (Global Engineering Documentation in Irvine, CA (714)261-1455??) SCSI-1: Doc \# X3.131-1986 from ANSI, 1430 Broadway, NY, NY 10018 IN-DEPTH EXPLORATION OF SCSI can be obtained from Solution Technology, Attn: SCSI Publications, POB 104, Boulder Creek, CA 95006, (408)338-4285, FAX (408)338-4374 THE SCSI ENCYLOPEDIA and the SCSI BENCH REFERENCE can be obtained from ENDL Publishing, 14426 Black Walnut Ct., Saratoga, CA 95090, (408)867-6642, FAX (408)867-2115 SCSI: UNDERSTANDING THE SMALL COMPUTER SYSTEM INTERFACE was published by Prentice-Hall, ISBN 0-13-796855-8

15.<u>Related Information Sources</u>

15.1 HOWTOs and FAQs

The Linux **SCSI–HOWTO** by Drew Eckhardt covers all supported SCSI controllers as well as device specific questions. A lot of troubleshooting hints are given. It is available from sunsite.unc.edu in /pub/Linux/docs/LDP and its mirror sites.

General questions about SCSI are answered in the SCSI-FAQ from the newsgroup Comp.Periphs.Scsi (available on tsx-11 in pub/linux/ALPHA/scsi and mirror sites).

15.2 Mailing list

There is a **mailing list** for bug reports and questions regarding SCSI development under Linux. To join, send email to majordomo@vger.rutgers.edu with the line subscribe linux-scsi in the body of the message. Messages should be posted to linux-scsi@vger.rutgers.edu. Help text can be requested by sending the message line "help" to majordomo@vger.rutgers.edu.

15.3 Example code

sunsite.unc.edu: apps/graphics/hpscanpbm-0.3a.tar.gz

This package handles a HP scanjet scanner through the generic interface.

tsx-11.mit.edu: BETA/cdrom/private/mkisofs/cdwrite-1.3.tar.gz

The cdwrite package uses the generic interface to write a cd image to a cd writer.

sunsite.unc.edu: apps/sound/cds/cdda2wav*.src.tar.gz

A shameless plug for my own application, which copies audio cd tracks into wav files.

16. Other useful stuff

Things that may come in handy. I don't have no idea if there are newer or better versions around. Feedback is welcome.

16.1 Device driver writer helpers

These documents can be found at the sunsite.unc.edu ftp server and its mirrors.

/pub/Linux/docs/kernel/kernel-hackers-guide

The LDP kernel hackers guide. May be a bit outdated, but covers the most fundamental things.

/pub/Linux/docs/kernel/drivers.doc.z

This document covers writing character drivers.

/pub/Linux/docs/kernel/tutorial.doc.z

Tutorial on writing a character device driver with code.

/pub/Linux/docs/kernel/scsi.paper.tar.gz

A Latex document describing howto write a SCSI driver.

/pub/Linux/docs/hardware/DEVICES

A list of device majors and minors used by Linux.

16.2 Utilities

tsx-11.mit.edu: ALPHA/scsi/scsiinfo*.tar.gz

Program to query a scsi device for operating parameters, defect lists, etc. An X-based interface is available which requires you have Tk/Tcl/wish installed. With the X-based interface you can easily alter the settings on the drive.

tsx-11.mit.edu: ALPHA/kdebug

A gdb extension for kernel debugging.

17. Other SCSI Access Interfaces

In Linux there is also another SCSI access method via SCSI_IOCTL_SEND_COMMAND ioctl calls, which is deprecated. Special tools like 'scsiinfo' utilize it.

There are some other similar interfaces in use in the un*x world, but not available for Linux:

- 1. CAM (Common Access Method) developed by Future Domain and other SCSI vendors. Linux has little support for a SCSI CAM system yet (mainly for booting from hard disk). CAM even supports target mode, so one could disguise ones computer as a peripheral hardware device (e.g. for a small SCSI net).
- 2. ASPI (Advanced SCSI Programming Interface) developed by Adaptec. This is the de facto standard for MS–DOS machines.

There are other application interfaces from SCO(TM), NeXT(TM), Silicon Graphics(TM) and SUN(TM) as well.

18.Final Comments

The generic SCSI interface bridges the gap between user applications and specific devices. But rather than bloating a lot of programs with similar sets of low–level functions, it would be more desirable to have a shared library with a generalized set of low–level functions for a particular purpose. The main goal should be to have independent layers of interfaces. A good design would separate an application into low–level and hardware independent routines. The low–level routines could be put into a shared library and made available for all applications. Here, standardized interfaces should be followed as much as possible before making new ones.

By now you should know more than I do about the Linux generic SCSI interface. So you can start developing

powerful applications for the benefit of the global Linux community now...

19.Acknowledgments

Special thanks go to Jeff Tranter for proofreading and enhancing the text considerably as well as to Carlos Puchol for useful comments. Drew Eckhardt's and Eric Youngdale's help on my first (dumb) questions about the use of this interface has been appreciated.

20. Appendix

21. Error handling

The functions open, ioctl, write and read can report errors. In this case their return value is -1 and the global variable errno is set to the error number. The errno values are defined in /usr/include/errno.h. Possible values are:

Function	Error	Description
=========	================	
open	ENXIO	not a valid device
	EACCES	access mode is not read/write (O_RDWR)
	EBUSY	device was requested for nonblocking access,
		but is busy now.
	ERESTARTSYS	this indicates an internal error. Try to
		make it reproducible and inform the SCSI
		channel (for details on bug reporting
		see Drew Eckhardts SCSI-HOWTO).
ioctl	ENXIO	not a valid device
read	EAGAIN	the device would block. Try again later.
	ERESTARTSYS	this indicates an internal error. Try to
		make it reproducible and inform the SCSI
		channel (for details on bug reporting
		see Drew Eckhardts SCSI-HOWTO).
write	EIO	the length is too small (smaller than the
		generic header struct). Caution: Currently
		there is no overlength checking.
	EAGAIN	the device would block. Try again later.
	ENOMEM	memory required for this request could not be
		allocated. Try later again unless you
		exceeded the maximum transfer size (see above)
select		none
close		none

For read/write positive return values indicate as usual the amount of bytes that have been successfully transferred. This should equal the amount you requested.

21.1 Error status decoding

Furthermore a detailed reporting is done via the kernels hd_status and the devices sense_buffer (see section <u>sec-sensebuff</u>) both from the generic header structure.

The meaning of hd_status can be found in drivers/scsi/scsi.h: This unsigned int is composed out of different parts:

These macros from drivers/scsi/scsi.h are available, but unfortunately cannot be easily used due to weird header file interdependencies. This has to be cleaned.

```
MacroDescriptionstatus_byte(hd_status)The SCSI device status. See section Status codesmsg_byte(hd_status)From the device. See section SCSI sense keyshost_byte(hd_status)From the kernel. See section Hostcodesdriver_byte(hd_status)From the kernel. See section midlevel codes
```

21.2 Status codes

The following status codes from the SCSI device (defined in scsi/scsi.h) are available.

0x0c | RESERVATION_CONFLICT

Note that these symbol values have been **shifted right once**. When the status is CHECK_CONDITION, the sense data in the sense buffer is valid (check especially the additional sense code and additional sense code qualifier).

These values carry the meaning from the SCSI-2 specification:

						Ta!	ble 2 =====	7: Status Byte Code
	Bi	its d	of St	catus	Byt	te		Status
7	6	5	4	3	2	1	0	1
R	R	0	0	0	0	0	 R	 GOOD
R	R	0	0	0	0	1	R	CHECK CONDITION
R	R	0	0	0	1	0	R	CONDITION MET
R	R	0	0	1	0	0	R	BUSY
R	R	0	1	0	0	0	R	INTERMEDIATE
R	R	0	1	0	1	0	R	INTERMEDIATE-CONDITION MET
R	R	0	1	1	0	0	R	RESERVATION CONFLICT
R	R	1	0	0	0	1	R	COMMAND TERMINATED
R	R	1	0	1	0	0	R	QUEUE FULL
	A	Ll Ot	cher	Code	s			Reserved
Кез	/: R	= Re	eserv	ved k	oit			

A definition of the status byte codes is given below.

GOOD. This status indicates that the target has successfully completed the command.

CHECK CONDITION. This status indicates that a contingent allegiance condition has occurred (see 6.6).

CONDITION MET. This status or INTERMEDIATE-CONDITION MET is returned whenever the requested operation is satisfied (see the SEARCH DATA and PRE-FETCH commands).

BUSY. This status indicates that the target is busy. This status shall be returned whenever a target is unable to accept a command from an otherwise acceptable initiator (i.e., no reservation conflicts). The recommended initiator recovery action is to issue the command again at a later time.

INTERMEDIATE. This status or INTERMEDIATE-CONDITION MET shall be returned for every successfully completed command in a series of linked commands (except the last command), unless the command is terminated with CHECK CONDITION, RESERVATION CONFLICT, or COMMAND TERMINATED status. If INTERMEDIATE or INTERMEDIATE-CONDITION MET status is not returned, the series of linked commands is terminated and the I/O process is ended.

INTERMEDIATE-CONDITION MET. This status is the combination of the CONDITION MET and INTERMEDIATE statuses.

RESERVATION CONFLICT. This status shall be returned whenever an initiator

attempts to access a logical unit or an extent within a logical unit that is reserved with a conflicting reservation type for another SCSI device (see the RESERVE and RESERVE UNIT commands). The recommended initiator recovery action is to issue the command again at a later time.

COMMAND TERMINATED. This status shall be returned whenever the target terminates the current I/O process after receiving a TERMINATE I/O PROCESS message (see 5.6.22). This status also indicates that a contingent allegiance condition has occurred (see 6.6).

QUEUE FULL. This status shall be implemented if tagged queuing is implemented. This status is returned when a SIMPLE QUEUE TAG, ORDERED QUEUE TAG, or HEAD OF QUEUE TAG message is received and the command queue is full. The I/O process is not placed in the command queue.

21.3 SCSI Sense Keys

These kernel symbols (from scsi/scsi.h) are predefined:

Value	Symbol
======	
0x00	NO_SENSE
0x01	RECOVERED_ERROR
0x02	NOT_READY
0x03	MEDIUM_ERROR
0x04	HARDWARE_ERROR
0x05	ILLEGAL_REQUEST
0x06	UNIT_ATTENTION
0x07	DATA_PROTECT
0x08	BLANK_CHECK
0x0a	COPY_ABORTED
0x0b	ABORTED_COMMAND
0x0d	VOLUME_OVERFLOW
0x0e	MISCOMPARE

A verbatim list from the SCSI–2 doc follows (from section 7.2.14.3):

+========	Table 69: Sense Key (0h-7h) Descriptions
Sense Key	Description
0h 	NO SENSE. Indicates that there is no specific sense key information to be reported for the designated logical unit. This would be the case for a successful command or a command that received CHECK CONDITION or COMMAND TERMINATED status because one of the filemark, EOM, or ILI bits is set to one.

The Linux SCSI programming HOWTO

1h 	RECOVERED ERROR. Indicates that the last command completed successfully with some recovery action performed by the target. Details may be determinable by examining the additional sense bytes and the information field. When multiple recovered errors occur during one command, the choice of which error to report (first, last, most severe, etc.) is device specific.
	NOT READY. Indicates that the logical unit addressed cannot be
2h	accessed. Operator intervention may be required to correct this
	condition.
	MEDIUM ERROR. Indicates that the command terminated with a non-
3h	recovered error condition that was probably caused by a flaw in
	the medium or an error in the recorded data. This sense key may
	also be returned if the target is unable to distinguish between a
	flaw in the medium and a specific hardware failure (sense key 4h).
	<pre>HARDWARE ERROR. Indicates that the target detected a non-</pre>
4h	recoverable hardware failure (for example, controller failure,
	device failure, parity error, etc.) while performing the command
	or during a self test.
 5h 	ILLEGAL REQUEST. Indicates that there was an illegal parameter in the command descriptor block or in the additional parameters supplied as data for some commands (FORMAT UNIT, SEARCH DATA, etc.). If the target detects an invalid parameter in the command descriptor block, then it shall terminate the command without altering the medium. If the target detects an invalid parameter in the additional parameters supplied as data, then the target may have already altered the medium. This sense key may also indicate that an invalid IDENTIFY message was received (5.6.7).
	UNIT ATTENTION. Indicates that the removable medium may have been
6h	changed or the target has been reset. See 6.9 for more detailed
	information about the unit attention condition.
 7h +========	DATA PROTECT. Indicates that a command that reads or writes the medium was attempted on a block that is protected from this operation. The read or write operation is not performed.

Table 70: Sense Key (8h-Fh) Descriptions

Sense Key	Description
8h	BLANK CHECK. Indicates that a write-once device or a sequential- access device encountered blank medium or format-defined end-of- data indication while reading or a write-once device encountered non-blank medium while writing.
9h	Vendor Specific. This sense key is available for reporting vendo specific conditions.
Ah	COPY ABORTED. Indicates a COPY, COMPARE, or COPY AND VERIFY command was aborted due to an error condition on the source device, the destination device, or both. (See 7.2.3.2 for additional information about this sense key.)
Bh	ABORTED COMMAND. Indicates that the target aborted the command. The initiator may be able to recover by trying the command again.

Ch | EQUAL. Indicates a SEARCH DATA command has satisfied an equal comparison. Dh | VOLUME OVERFLOW. Indicates that a buffered peripheral device has reached the end-of-partition and data may remain in the buffer that has not been written to the medium. A RECOVER BUFFERED DATA command(s) may be issued to read the unwritten data from the buffer. _____ _____ MISCOMPARE. Indicates that the source data did not match the data Eh read from the medium. -+-_____ Fh RESERVED.

21.4 Host codes

The following host codes are defined in drivers/scsi/scsi.h. They are set by the kernel driver.

Value	Symbol	Description
=====	=======================================	
0x00	DID_OK	No error
0x01	DID_NO_CONNECT	Couldn't connect before timeout period
0x02	DID_BUS_BUSY	BUS stayed busy through time out period
0x03	DID_TIME_OUT	TIMED OUT for other reason
0x04	DID_BAD_TARGET	BAD target
0x05	DID_ABORT	Told to abort for some other reason
0x06	DID_PARITY	Parity error
0x07	DID_ERROR	internal error
0x08	DID_RESET	Reset by somebody
0x09	DID_BAD_INTR	Got an interrupt we weren't expecting

21.5 Driver codes

The midlevel driver categorizes the returned status from the lowlevel driver based on the sense key from the device. It suggests some actions to be taken such as retry, abort or remap. The routine scsi_done from scsi.c does a very differentiated handling based on host_byte(), status_byte(), msg_byte() and the suggestion. It then sets the driver byte to show what it has done. The driver byte is composed out of two nibbles: the driver status and the suggestion. Each half is composed from the below values being 'or'ed together (found in scsi.h).

The Linux SCSI programming HOWTO

0x03	DRIVER_MEDIA	not used
0x04	DRIVER_ERROR	internal driver error
0x05	DRIVER_INVALID	finished (DID_BAD_TARGET or DID_ABORT)
0x06	DRIVER_TIMEOUT	finished with timeout
0x07	DRIVER_HARD	finished with fatal error
0x08	DRIVER_SENSE	had sense information available

Value	Symbol	Description of suggestion
======	===================	
0x10	SUGGEST_RETRY	retry the SCSI request
0x20	SUGGEST_ABORT	abort the request
0x30	SUGGEST_REMAP	remap the block (not yet implemented)
0x40	SUGGEST_DIE	let the kernel panic
0x80	SUGGEST_SENSE	get sense information from the device
0xff	SUGGEST_IS_OK	nothing to be done

22.Additional sense codes and additional sense code qualifiers

When the status of the executed SCSI command is CHECK_CONDITION, sense data is available in the sense buffer. The additional sense code and additional sense code qualifier are contained in that buffer.

From the SCSI-2 specification I include two tables. The first is in lexical, the second in numerical order.

22.1 ASC and ASCQ in lexical order

The following table list gives a list of descriptions and device types they apply to.

```
D - DIRECT ACCESS DEVICE
         .T - SEQUENTIAL ACCESS DEVICE
         . L - PRINTER DEVICE
         . P - PROCESSOR DEVICE
         . .W - WRITE ONCE READ MULTIPLE DEVICE
         . . R - READ ONLY (CD-ROM) DEVICE
         . . S - SCANNER DEVICE
         . . . O - OPTICAL MEMORY DEVICE
         . . M - MEDIA CHANGER DEVICE
         . . . C - COMMUNICATION DEVICE
             .
ASC ASCQ DTLPWRSOMC DESCRIPTION
 ____
                  ------
13h 00h D W O ADDRESS MARK NOT FOUND FOR DATA FIELD
 12h00hDWOADDRESSMARKNOTFOUNDFORIDFIELD00h11hRAUDIOPLAYOPERATIONINPROGRESS
```

The Linux SCSI programming HOWTO

00h	12h	R	AUDIO PLAY OPERATION PAUSED
00h	14h	R	AUDIO PLAY OPERATION STOPPED DUE TO ERROR
00h	13h	R	AUDIO PLAY OPERATION SUCCESSFULLY COMPLETED
00h	04h	T S	BEGINNING-OF-PARTITION/MEDIUM DETECTED
14h	04h	Т	BLOCK SEQUENCE ERROR
30h	02h	DT WR O	CANNOT READ MEDIUM - INCOMPATIBLE FORMAT
30h	01h	DT WR O	CANNOT READ MEDIUM - UNKNOWN FORMAT
52h	00h	Т	CARTRIDGE FAULT
3Fh	02h	DTLPWRSOMC	CHANGED OPERATING DEFINITION
11h	06h	WR O	CIRC UNRECOVERED ERROR
30h	03h	DT	CLEANING CARTRIDGE INSTALLED
4Ah	00h	DTLPWRSOMC	COMMAND PHASE ERROR
2Ch	00h	DTLPWRSOMC	COMMAND SEQUENCE ERROR
2Fh	00h	DTLPWRSOMC	COMMANDS CLEARED BY ANOTHER INITIATOR
2Bh	00h	DTLPWRSO C	COPY CANNOT EXECUTE SINCE HOST CANNOT DISCONNECT
41h	00h	D	DATA PATH FAILURE (SHOULD USE 40 NN)
4Bh	00h	DTLPWRSOMC	DATA PHASE ERROR
11h	07h	W O	DATA RESYCHRONIZATION ERROR
		D W O	DATA SYNCHRONIZATION MARK ERROR
19h	00h	D 0 D 0	DEFECT LIST ERROR
19h	03h	D O	DEFECT LIST ERROR IN GROWN LIST
		D O	DEFECT LIST ERROR IN PRIMARY LIST
		D O	DEFECT LIST NOT AVAILABLE
1Ch	00h	D O	DEFECT LIST NOT FOUND
32h	01h	D W O	DEFECT LIST UPDATE FAILURE
40h	NNh	DTLPWRSOMC	DIAGNOSTIC FAILURE ON COMPONENT NN (80H-FFH)
63h	00h	R	END OF USER AREA ENCOUNTERED ON THIS TRACK
00h	05h	T S	END-OF-DATA DETECTED
14h	03h	Т	END-OF-DATA NOT FOUND
00h	02h		END-OF-PARTITION/MEDIUM DETECTED
-	00h		ERASE FAILURE
-			ERROR LOG OVERFLOW
-			ERROR TOO LONG TO CORRECT
-	02h	Т	EXCESSIVE WRITE ERRORS
	07h	L	FAILED TO SENSE BOTTOM-OF-FORM
3Bh	06h	L	FAILED TO SENSE TOP-OF-FORM
-	01h	Т	FILEMARK DETECTED
-	02h		FILEMARK OR SETMARK NOT FOUND
-			FOCUS SERVO FAILURE
		-	FORMAT COMMAND FAILED
58h		0	GENERATION DOES NOT EXIST
+====	=====	============	=======================================

Table 71: (continued)

+	=====	=====		+
	ASC	ASCQ	DTLPWRSOMC	DESCRIPTION
	1Ch	02h	D O	GROWN DEFECT LIST NOT FOUND
	00h	06h	DTLPWRSOMC	I/O PROCESS TERMINATED
	10h	00h	D W O	ID CRC OR ECC ERROR
	22h	00h	D	ILLEGAL FUNCTION (SHOULD USE 20 00, 24 00, OR 26 00)
	64h	00h	R	ILLEGAL MODE FOR THIS TRACK
	28h	01h	М	IMPORT OR EXPORT ELEMENT ACCESSED
	30h	00h	DT WR OM	INCOMPATIBLE MEDIUM INSTALLED
	11h	08h	Т	INCOMPLETE BLOCK READ
	48h	00h	DTLPWRSOMC	INITIATOR DETECTED ERROR MESSAGE RECEIVED
	3Fh	03h	DTLPWRSOMC	INQUIRY DATA HAS CHANGED
Ì	44h	00h	DTLPWRSOMC	INTERNAL TARGET FAILURE

22.Additional sense codes and additional sense code qualifiers

Т	3Dh	00b		INVALID BITS IN IDENTIFY MESSAGE
ł		02h		
ł				INVALID COMMAND OPERATION CODE
ł		01h	M	
ł				INVALID FIELD IN CDB
-				INVALID FIELD IN COD
ł				INVALID MESSAGE ERROR
ł		05h		L-EC UNCORRECTABLE ERROR
ł	60h	00h		LAMP FAILURE
ł				LOG COUNTER AT MAXIMUM
ł				LOG EXCEPTION
ł				LOG LIST CODES EXHAUSTED
ł				LOG PARAMETERS CHANGED
ł				LOGICAL BLOCK ADDRESS OUT OF RANGE
ł				LOGICAL UNIT COMMUNICATION FAILURE
ł				LOGICAL UNIT COMMUNICATION PARITY ERROR
ł				LOGICAL UNIT COMMUNICATION TIME-OUT
ł				LOGICAL UNIT FAILED SELF-CONFIGURATION
ł				LOGICAL UNIT HAS NOT SELF-CONFIGURED YET
ł	04h			LOGICAL UNIT IS IN PROCESS OF BECOMING READY
ł				LOGICAL UNIT NOT READY, CAUSE NOT REPORTABLE
i		04h		
i				LOGICAL UNIT NOT READY, INITIALIZING COMMAND REQUIRED
i				LOGICAL UNIT NOT READY, MANUAL INTERVENTION REQUIRED
i				LOGICAL UNIT NOT SUPPORTED
i			DTL WRSOM	
i			DTL WRSOM	
i		0Dh		MEDIUM DESTINATION ELEMENT FULL
i	31h	00h	DT W O	MEDIUM FORMAT CORRUPTED
i	3Ah	00h	DTL WRSOM	MEDIUM NOT PRESENT
i	53h	02h	DT WR OM	MEDIUM REMOVAL PREVENTED
i	3Bh	0Eh	М	MEDIUM SOURCE ELEMENT EMPTY
i	43h	00h	DTLPWRSOMC	MESSAGE ERROR
i	3Fh	01h	DTLPWRSOMC	MICROCODE HAS BEEN CHANGED
i	1Dh	00h	D W O	MISCOMPARE DURING VERIFY OPERATION
İ	11h	0Ah	DT O	MISCORRECTED ERROR
İ	2Ah	01h	DTL WRSOMC	MODE PARAMETERS CHANGED
İ	07h	00h	DTL WRSOM	MULTIPLE PERIPHERAL DEVICES SELECTED
İ	11h	03h	DT W SO	MULTIPLE READ ERRORS
İ	00h	00h	DTLPWRSOMC	NO ADDITIONAL SENSE INFORMATION
İ	00h	15h	R	NO CURRENT AUDIO STATUS TO RETURN
İ	32h	00h	D W O	NO DEFECT SPARE LOCATION AVAILABLE
İ	11h	09h	Т	NO GAP FOUND
İ	01h	00h	D W O	NO INDEX/SECTOR SIGNAL
İ	06h	00h	D WR OM	NO REFERENCE POSITION FOUND
+:	=====	=====		+====================================

61h	02h	S	OUT OF FOCUS
4Eh		DTLPWRSOMC	OVERLAPPED COMMANDS ATTEMPTED
2Dh	00h	Т	OVERWRITE ERROR ON UPDATE IN PLACE
3Bh	05h	L	PAPER JAM
1Ah	00h	DTLPWRSOMC	PARAMETER LIST LENGTH ERROR
26h	01h	DTLPWRSOMC	PARAMETER NOT SUPPORTED
26h	02h	DTLPWRSOMC	PARAMETER VALUE INVALID
2Ah	00h	DTL WRSOMC	PARAMETERS CHANGED
03h	00h	DTL W SO	PERIPHERAL DEVICE WRITE FAULT
50h	02h	Т	POSITION ERROR RELATED TO TIMING
3Bh	0Ch	S	POSITION PAST BEGINNING OF MEDIUM
3Bh	0Bh	S	POSITION PAST END OF MEDIUM
15h	02h	DT WR O	POSITIONING ERROR DETECTED BY READ OF MEDIUM
29h	00h	DTLPWRSOMC	POWER ON, RESET, OR BUS DEVICE RESET OCCURRED
42h	00h	D	POWER-ON OR SELF-TEST FAILURE (SHOULD USE 40 NN)
1Ch	01h	D O	PRIMARY DEFECT LIST NOT FOUND
40h	00h	D	RAM FAILURE (SHOULD USE 40 NN)
15h	00h	DTL WRSOM	RANDOM POSITIONING ERROR
3Bh	0Ah	S	READ PAST BEGINNING OF MEDIUM
3Bh	09h	S	READ PAST END OF MEDIUM
11h	01h	DT W SO	READ RETRIES EXHAUSTED
14h	01h	DT WR O	RECORD NOT FOUND
14h	00h	DTL WRSO	RECORDED ENTITY NOT FOUND
18h	02h	D WR O	RECOVERED DATA - DATA AUTO-REALLOCATED
18h	05h	D WR O	RECOVERED DATA - RECOMMEND REASSIGNMENT
18h	06h	D WR O	RECOVERED DATA - RECOMMEND REWRITE
17h	05h	D WR O	RECOVERED DATA USING PREVIOUS SECTOR ID
18h	03h	R	RECOVERED DATA WITH CIRC
18h	01h	D WR O	RECOVERED DATA WITH ERROR CORRECTION & RETRIES APPLIED
18h	00h	DT WR O	RECOVERED DATA WITH ERROR CORRECTION APPLIED
18h	04h	R	RECOVERED DATA WITH L-EC
17h	03h	DT WR O	RECOVERED DATA WITH NEGATIVE HEAD OFFSET
17h	00h	DT WRSO	RECOVERED DATA WITH NO ERROR CORRECTION APPLIED
17h	02h	DT WR O	RECOVERED DATA WITH POSITIVE HEAD OFFSET
17h	01h	DT WRSO	RECOVERED DATA WITH RETRIES
17h	04h	WR O	RECOVERED DATA WITH RETRIES AND/OR CIRC APPLIED
17h	06h	D W O	RECOVERED DATA WITHOUT ECC - DATA AUTO-REALLOCATED
17h	07h	D W O	RECOVERED DATA WITHOUT ECC - RECOMMEND REASSIGNMENT
17h	08h	D W O	RECOVERED DATA WITHOUT ECC - RECOMMEND REWRITE
1Eh	00h	D W O	RECOVERED ID WITH ECC CORRECTION
3Bh			REPOSITION ERROR
36h	00h	L	RIBBON, INK, OR TONER FAILURE
37h		DTL WRSOMC	ROUNDED PARAMETER
5Ch	00h	D O	RPL STATUS CHANGE
39h	00h	DTL WRSOMC	SAVING PARAMETERS NOT SUPPORTED
62h	00h	S	SCAN HEAD POSITIONING ERROR
47h	00h	DTLPWRSOMC	SCSI PARITY ERROR
54h	00h	P	SCSI TO HOST SYSTEM INTERFACE FAILURE
45h	00h	DTLPWRSOMC	SELECT OR RESELECT FAILURE
+====		=======================================	+

Ι	09h	03h	WR O	SPINDLE SERVO FAILURE
i				SPINDLES NOT SYNCHRONIZED
i				SPINDLES SYNCHRONIZED
i				SYNCHRONOUS DATA TRANSFER ERROR
i				
i	33h	00h	Т	SYSTEM RESOURCE FAILURE TAPE LENGTH ERROR
i				TAPE OR ELECTRONIC VERTICAL FORMS UNIT NOT READY
i				TAPE POSITION ERROR AT BEGINNING-OF-MEDIUM
i	3Bh	02h	Т	TAPE POSITION ERROR AT END-OF-MEDIUM
i				TARGET OPERATING CONDITIONS HAVE CHANGED
i				THRESHOLD CONDITION MET
i	26h	03h	DTLPWRSOMC	THRESHOLD PARAMETERS NOT SUPPORTED
i	2Ch	01h	S	TOO MANY WINDOWS SPECIFIED
i				TRACK FOLLOWING ERROR
i				TRACKING SERVO FAILURE
i	61h	01h	S	UNABLE TO ACQUIRE VIDEO
i	57h	00h	R	
i	53h	01h	Т	UNLOAD TAPE FAILURE
i				UNRECOVERED READ ERROR
i	11h	04h	D W O	UNRECOVERED READ ERROR - AUTO REALLOCATE FAILED
İ	11h	0Bh	D W O	UNRECOVERED READ ERROR - RECOMMEND REASSIGNMENT
İ				UNRECOVERED READ ERROR - RECOMMEND REWRITE THE DATA
Ì				UNSUCCESSFUL SOFT RESET
Ì	59h	00h	0 S	UPDATED BLOCK READ
Ì	61h	00h	S	VIDEO ACQUISITION ERROR
Ì	50h	00h	Т	WRITE APPEND ERROR
	50h	01h	Т	WRITE APPEND POSITION ERROR
	0Ch	00h	T S	WRITE ERROR
	0Ch	02h	D W O	WRITE ERROR - AUTO REALLOCATION FAILED
	0Ch	01h	DWO	WRITE ERROR RECOVERED WITH AUTO REALLOCATION
	27h	00h	DT W O	WRITE PROTECTED
	80h	XXh	\setminus	
	THRO	UGH	>	VENDOR SPECIFIC.
ļ	FFh	XX	/	
ļ				
ļ		80h		
ļ				VENDOR SPECIFIC QUALIFICATION OF STANDARD ASC.
	XXh	FFh	/	
				ALL CODES NOT SHOWN ARE RESERVED.
-				

22.2 ASC and ASCQ in numerical order

Table 364: ASC and ASCQ Assignments

The Linux SCSI programming HOWTO

		M -	OPTICAL MEMORY DEVICE MEDIA CHANGER DEVICE - COMMUNICATION DEVICE
ASC	ASCQ	DTLPWRSOMC	DESCRIPTION
00	00	DTLPWRSOMC	NO ADDITIONAL SENSE INFORMATION
00	01	Т	FILEMARK DETECTED
00	02		END-OF-PARTITION/MEDIUM DETECTED
00		Т	SETMARK DETECTED
00	04	T S	BEGINNING-OF-PARTITION/MEDIUM DETECTED
00	05	T S	END-OF-DATA DETECTED
00	06	DTLPWRSOMC	I/O PROCESS TERMINATED
00	11	R	AUDIO PLAY OPERATION IN PROGRESS
00	12	R	AUDIO PLAY OPERATION PAUSED
00	13	R	AUDIO PLAY OPERATION SUCCESSFULLY COMPLETED
00	14	R	AUDIO PLAY OPERATION STOPPED DUE TO ERROR
00	15	R	NO CURRENT AUDIO STATUS TO RETURN
01	00	DW O	NO INDEX/SECTOR SIGNAL
02	00	DWR OM	NO SEEK COMPLETE
03	00	DTL W SO	PERIPHERAL DEVICE WRITE FAULT
03	01	Т	NO WRITE CURRENT
03	02	Т	EXCESSIVE WRITE ERRORS
04	00	DTLPWRSOMC	LOGICAL UNIT NOT READY, CAUSE NOT REPORTABLE
04	01	DTLPWRSOMC	LOGICAL UNIT IS IN PROCESS OF BECOMING READY
04	02	DTLPWRSOMC	LOGICAL UNIT NOT READY, INITIALIZING COMMAND REQUIRED
04	03	DTLPWRSOMC	LOGICAL UNIT NOT READY, MANUAL INTERVENTION REQUIRED
04	04	DTL O	LOGICAL UNIT NOT READY, FORMAT IN PROGRESS
05	00	DTL WRSOMC	LOGICAL UNIT DOES NOT RESPOND TO SELECTION
06	00	DWR OM NO	REFERENCE POSITION FOUND
07		DTL WRSOM	MULTIPLE PERIPHERAL DEVICES SELECTED
08	00	DTL WRSOMC	LOGICAL UNIT COMMUNICATION FAILURE
08	01	DTL WRSOMC	
08	02	DTL WRSOMC	LOGICAL UNIT COMMUNICATION PARITY ERROR
09		DT WR O	TRACK FOLLOWING ERROR
09		WR O	TRA CKING SERVO FAILURE
09	02	WR O	FOC US SERVO FAILURE
09	03	WR O	SPI NDLE SERVO FAILURE
+====	=====	=============	

Table 364: (continued)

+==========	+
	D - DIRECT ACCESS DEVICE
	.T - SEQUENTIAL ACCESS DEVICE
	. L - PRINTER DEVICE
	. P - PROCESSOR DEVICE
	W - WRITE ONCE READ MULTIPLE DEVICE
	R - READ ONLY (CD-ROM) DEVICE
	S - SCANNER DEVICE
	O - OPTICAL MEMORY DEVICE
	M - MEDIA CHANGER DEVICE
	C - COMMUNICATION DEVICE
ASC ASCQ	DTLPWRSOMC DESCRIPTION
0A 00	DTLPWRSOMC ERROR LOG OVERFLOW
0B 00	
00 00	T S WRITE ERROR

0C	01	D	W O	WRITE ERROR RECOVERED WITH AUTO REALLOCATION
00	02	D	W O	WRITE ERROR - AUTO REALLOCATION FAILED
0D	00			
0E	00			
0F	00			
10	00	D	WO	ID CRC OR ECC ERROR
11	00	DT	WRSO	UNRECOVERED READ ERROR
11	01	DT	W SO	READ RETRIES EXHAUSTED
11	02	DT		ERROR TOO LONG TO CORRECT
11	03	DT		MULTIPLE READ ERRORS
11	04	D	WO	UNRECOVERED READ ERROR - AUTO REALLOCATE FAILED
11	05		WR O	L-EC UNCORRECTABLE ERROR
11	06		WR O	CIRC UNRECOVERED ERROR
11	07	_	W O	DATA RESYCHRONIZATION ERROR
11	08	Т		INCOMPLETE BLOCK READ
11	09	Т	-	NO GAP FOUND
11	0A	DT	0	MISCORRECTED ERROR
11	0B	D	W O	UNRECOVERED READ ERROR - RECOMMEND REASSIGNMENT
11	0C	D	W O	UNRECOVERED READ ERROR - RECOMMEND REWRITE THE DATA
12 13	00 00	D D	W O W O	ADDRESS MARK NOT FOUND FOR ID FIELD ADDRESS MARK NOT FOUND FOR DATA FIELD
14	00	-	W O WRSO	RECORDED ENTITY NOT FOUND
14	01		WRSO WR O	RECORDED ENTITY NOT FOUND
1 14	01	T	WR U	FILEMARK OR SETMARK NOT FOUND
14	02	T		END-OF-DATA NOT FOUND
14	04	T		BLOCK SEQUENCE ERROR
15	00	-	WRSOM	~
1 15	01		WRSOM	
15	02	DT	WR O	
16	00	DW	0	DATA SYNCHRONIZATION MARK ERROR
17	00	DT	WRSO	RECOVERED DATA WITH NO ERROR CORRECTION APPLIED
17	01	DT	WRSO	RECOVERED DATA WITH RETRIES
17	02	DT	WR O	RECOVERED DATA WITH POSITIVE HEAD OFFSET
17	03	DT	WR O	RECOVERED DATA WITH NEGATIVE HEAD OFFSET
17	04		WR O	RECOVERED DATA WITH RETRIES AND/OR CIRC APPLIED
17	05	D	WR O	RECOVERED DATA USING PREVIOUS SECTOR ID
17	06	D	W O	RECOVERED DATA WITHOUT ECC - DATA AUTO-REALLOCATED
17	07	D	W O	RECOVERED DATA WITHOUT ECC - RECOMMEND REASSIGNMENT
17	08	D	W O	RECOVERED DATA WITHOUT ECC - RECOMMEND REWRITE
18	00	DT	WR O	RECOVERED DATA WITH ERROR CORRECTION APPLIED
18	01	D	WR O	RECOVERED DATA WITH ERROR CORRECTION & RETRIES APPLIED
18	02	D	WR O	RECOVERED DATA - DATA AUTO-REALLOCATED
18	03		R	RECOVERED DATA WITH CIRC
18	04		R	RECOVERED DATA WITH LEC
1	05	D	WR O	RECOVERED DATA - RECOMMEND REASSIGNMENT
18	06	D	WR O	
+====	====	=====		

	M -	MEDIA CHANGER DEVICE
	C	- COMMUNICATION DEVICE
 ASC ASCQ	 DTLPWRSOMC	DESCRIPTION
19 00	D O	DEFECT LIST ERROR
19 01		
19 02	D O	DEFECT LIST ERROR IN PRIMARY LIST
-	-	DEFECT LIST ERROR IN GROWN LIST
	-	PARAMETER LIST LENGTH ERROR
		SYNCHRONOUS DATA TRANSFER ERROR
1C 00	D O	DEFECT LIST NOT FOUND
1C 01		PRIMARY DEFECT LIST NOT FOUND
-		GROWN DEFECT LIST NOT FOUND
		MISCOMPARE DURING VERIFY OPERATION
1E 00		RECOVERED ID WITH ECC
1F 00		
20 00	DTLPWRSOMC	INVALID COMMAND OPERATION CODE
21 00	DT WR OM	LOGICAL BLOCK ADDRESS OUT OF RANGE
21 01	M	INVALID ELEMENT ADDRESS
22 00	D	ILLEGAL FUNCTION (SHOULD USE 20 00, 24 00, OR 26 00)
23 00		
24 00	DTLPWRSOMC	INVALID FIELD IN CDB
	DTLPWRSOMC	LOGICAL UNIT NOT SUPPORTED
		INVALID FIELD IN PARAMETER LIST
		PARAMETER NOT SUPPORTED
-		PARAMETER VALUE INVALID
26 03		THRESHOLD PARAMETERS NOT SUPPORTED
27 00	DT W O	WRITE PROTECTED
28 00		NOT READY TO READY TRANSITION (MEDIUM MAY HAVE CHANGED)
28 01	М	IMPORT OR EXPORT ELEMENT ACCESSED
29 00	DTLPWRSOMC	POWER ON, RESET, OR BUS DEVICE RESET OCCURRED
		PARAMETERS CHANGED
2A 01	DTL WRSOMC	MODE PARAMETERS CHANGED
2A 02	DTL WRSOMC	LOG PARAMETERS CHANGED
		COPY CANNOT EXECUTE SINCE HOST CANNOT DISCONNECT
2C 00	DTLPWRSOMC	COMMAND SEQUENCE ERROR
2C 01	S	TOO MANY WINDOWS SPECIFIED
2C 02	S	INVALID COMBINATION OF WINDOWS SPECIFIED
2D 00	Т	OVERWRITE ERROR ON UPDATE IN PLACE
2E 00		
2F 00	DTLPWRSOMC	COMMANDS CLEARED BY ANOTHER INITIATOR
30 00	DT WR OM	INCOMPATIBLE MEDIUM INSTALLED
30 01	DT WR O	CANNOT READ MEDIUM - UNKNOWN FORMAT
30 02	DT WR O	CANNOT READ MEDIUM - INCOMPATIBLE FORMAT
30 03	DT	CLEANING CARTRIDGE INSTALLED
31 00	DT W O	MEDIUM FORMAT CORRUPTED
31 01	DL O	FORMAT COMMAND FAILED
32 00	D W O	NO DEFECT SPARE LOCATION AVAILABLE
32 01	D W O	DEFECT LIST UPDATE FAILURE
33 00	Т	TAPE LENGTH ERROR
34 00		
35 00		
36 00	L	RIBBON, INK, OR TONER FAILURE
+=========	=============	

Table 364: (continued)

			ACCESS DEVICE
		.I - SEQUEN . L - PRINT	TIAL ACCESS DEVICE
			ESSOR DEVICE
			TE ONCE READ MULTIPLE DEVICE
			AD ONLY (CD-ROM) DEVICE
			CANNER DEVICE
			OPTICAL MEMORY DEVICE
Ì			MEDIA CHANGER DEVICE
Ì			- COMMUNICATION DEVICE
İ			
ASC	ASCQ	DTLPWRSOMC	DESCRIPTION
	00	DIL WRSOMC	ROUNDED PARAMETER
38			SAVING PARAMETERS NOT SUPPORTED
39 3A			MEDIUM NOT PRESENT
3B	00	TL	SEQUENTIAL POSITIONING ERROR
3B		T	TAPE POSITION ERROR AT BEGINNING-OF-MEDIUM
3B		Т	TAPE POSITION ERROR AT END-OF-MEDIUM
3B		L	TAPE OR ELECTRONIC VERTICAL FORMS UNIT NOT READY
3B			SLEW FAILURE
3B			PAPER JAM
3B		L	FAILED TO SENSE TOP-OF-FORM
3B		L	FAILED TO SENSE BOTTOM-OF-FORM
3B		T	REPOSITION ERROR
3B			READ PAST END OF MEDIUM
3B		S	READ PAST BEGINNING OF MEDIUM
3B	0B	S	POSITION PAST END OF MEDIUM
3B	0C	S	POSITION PAST BEGINNING OF MEDIUM
3B	0D	М	MEDIUM DESTINATION ELEMENT FULL
3B	0E	М	MEDIUM SOURCE ELEMENT EMPTY
3C	00		
3D	00	DTLPWRSOMC	INVALID BITS IN IDENTIFY MESSAGE
3E	00	DTLPWRSOMC	LOGICAL UNIT HAS NOT SELF-CONFIGURED YET
3F	00	DTLPWRSOMC	TARGET OPERATING CONDITIONS HAVE CHANGED
3F	01	DTLPWRSOMC	MICROCODE HAS BEEN CHANGED
3F	02	DTLPWRSOMC	CHANGED OPERATING DEFINITION
3F	03	DTLPWRSOMC	INQUIRY DATA HAS CHANGED
40	00	D	RAM FAILURE (SHOULD USE 40 NN)
40	NN	DTLPWRSOMC	DIAGNOSTIC FAILURE ON COMPONENT NN (80H-FFH)
	00	D	DATA PATH FAILURE (SHOULD USE 40 NN)
		D	POWER-ON OR SELF-TEST FAILURE (SHOULD USE 40 NN)
			MESSAGE ERROR
44			INTERNAL TARGET FAILURE
45			SELECT OR RESELECT FAILURE
46			UNSUCCESSFUL SOFT RESET
47			SCSI PARITY ERROR
48			INITIATOR DETECTED ERROR MESSAGE RECEIVED
49			INVALID MESSAGE ERROR
4A			COMMAND PHASE ERROR
4B			DATA PHASE ERROR
4C		DITEAMK2OWG	LOGICAL UNIT FAILED SELF-CONFIGURATION
4D			
4E		DITEAMK20MC	OVERLAPPED COMMANDS ATTEMPTED
4F 50		т	WRITE APPEND ERROR
			WRITE APPEND ERROR WRITE APPEND POSITION ERROR
	0.5		
50	02	т С	POSITION ERROR RELATED TO TIMING ERASE FAILURE
	00		CARTRIDGE FAULT
	_		

			ACCESS DEVICE
			TIAL ACCESS DEVICE
		. L - PRINI	'ER DEVICE
		. P - PROC	LESSOR DEVICE
		W - WRI	TE ONCE READ MULTIPLE DEVICE
		R - RE	AD ONLY (CD-ROM) DEVICE
		S - S	CANNER DEVICE
			OPTICAL MEMORY DEVICE
			- MEDIA CHANGER DEVICE
		C	- COMMUNICATION DEVICE
ASC A 		 DTLPWRSOMC	DESCRIPTION
53		DTL WRSOM	MEDIA LOAD OR EJECT FAILED
53	01	Т	UNLOAD TAPE FAILURE
53	02	DT WR OM	MEDIUM REMOVAL PREVENTED
54	00	P	SCSI TO HOST SYSTEM INTERFACE FAILURE
55	00	P	SYSTEM RESOURCE FAILURE
56	00		
57	00	R	UNABLE TO RECOVER TABLE-OF-CONTENTS
	00	0	GENERATION DOES NOT EXIST
59		0	UPDATED BLOCK READ
5A	00	DTLPWRSOM	OPERATOR REQUEST OR STATE CHANGE INPUT (UNSPECIFIED)
5A	01		OPERATOR MEDIUM REMOVAL REQUEST
5A		DT W O	
5A			OPERATOR SELECTED WRITE PERMIT
5B			LOG EXCEPTION
	01		THRESHOLD CONDITION MET
5B			LOG COUNTER AT MAXIMUM
5B			LOG LIST CODES EXHAUSTED
5C 5C			RPL STATUS CHANGE SPINDLES SYNCHRONIZED
	02		SPINDLES NOT SYNCHRONIZED
	00	D 0	SFINDLES NOT SINCENONIZED
	00		
	00		
	00	S	LAMP FAILURE
	00		VIDEO ACQUISITION ERROR
	01	S	UNABLE TO ACQUIRE VIDEO
	02	S	OUT OF FOCUS
62	00	S	SCAN HEAD POSITIONING ERROR
63	00	R	END OF USER AREA ENCOUNTERED ON THIS TRACK
64	00	R	ILLEGAL MODE FOR THIS TRACK
65	00		
66	00		
	00		
	00		
	00		
6A			
6B			
6C			
6D			
6E			
6F	00		

	D – DIRECT ACCESS DEVICE	
	.T - SEQUENTIAL ACCESS DEVICE	
	. L - PRINTER DEVICE	
	. P - PROCESSOR DEVICE	
	W - WRITE ONCE READ MULTIPLE DEVICE	
	R - READ ONLY (CD-ROM) DEVICE	
	S - SCANNER DEVICE	
	O - OPTICAL MEMORY DEVICE	
	M - MEDIA CHANGER DEVICE	
	C - COMMUNICATION DEVICE	
	C COMMONICATION DEVICE	
SC	SCQ DTLPWRSOMC DESCRIPTION	
70	00	
71		
72		
73		
74		
75		
76		
77		
78		
79		
7A		
7B		
7C		
7D		
7E		
7F		
80	xxh \	
TH	OUGH > VENDOR SPECIFIC.	
FF	xxh /	
xxh	80 \	
	UGH > VENDOR SPECIFIC QUALIFICATION OF STANDARD ASC.	
	FF /	
	ALL CODES NOT SHOWN OR BLANK ARE RESERVED.	

23.A SCSI command code quick reference

Table 365 is a numerical order listing of the command operation codes.

Table 365: SCSI-2 Operation Codes

. . R - READ ONLY (CD-ROM) DEVICE . . S - SCANNER DEVICE . .O - OPTICAL MEMORY DEVICE . . M - MEDIA CHANGER DEVICE . C - COMMUNICATION DEVICE . OP DTLPWRSOMC Description ____+ _____ 00 MMMMMMMMM TEST UNIT READY 01 M REWIND 01 O V OO OO REZERO UNIT 02 VVVVVV V 03 MMMMMMMMM REQUEST SENSE FORMAT 04 O 04 M O FORMAT UNIT 05 VMVVVV V READ BLOCK LIMITS 06 VVVVVV V 07 O INITIALIZE ELEMENT STATUS 07 OVV O OV REASSIGN BLOCKS 08 M GET MESSAGE(06) 08 OMV OO OV READ(06) 08 O RECEIVE 09 VVVVVV V 0A M PRINT 0A M SEND MESSAGE(06) 0A M SEND(06) 0A OM O OV WRITE(06) 0B O OO OV SEEK(06) 0B O SLEW AND PRINT OC VVVVVV V OD VVVVVV V 0E VVVVVV V OF VOVVVV V READ REVERSE SYNCHRONIZE BUFFER 100OSYNCHRONIZE BUF!10VMVVVWRITE FILEMARKS11VMVVVVSPACE 12 MMMMMMMMMM INQUIRY 13 VOVVVV VERIFY(06) 14 VOOVVV RECOVER BUFFERED DATA 15 OMO OOOOOO MODE SELECT(06) 16 M MM MO RESERVE 16 MM M RESERVE UNIT 17 M MM MO RELEASE 17 MM M RELEASE UNIT 18 0000000 COPY 19 VMVVVV ERASE 1A OMO OOOOOO MODE SENSE(06) 1B O LOAD UNLOAD 1B O SCAN 1B O STOP PRINT 1B O OO O STOP START UNIT

		ESSOR DEVICE TE ONCE READ MULTIPLE DEVICE	V = Vendor Specific R = Reserved
	R - RE	CAD ONLY (CD-ROM) DEVICE	
		CANNER DEVICE	
	0 -	OPTICAL MEMORY DEVICE	
i		MEDIA CHANGER DEVICE	
i	с	- COMMUNICATION DEVICE	
i			
OP	DTLPWRSOMC	Description	
		RECEIVE DIAGNOSTIC RESULTS SEND DIAGNOSTIC	
	00 00 00	PREVENT ALLOW MEDIUM REMOVAL	
1F	<u>,, ,,,,,,,</u>		
20			
21			
	V VV V		
23			
24		SET WINDOW	
25		GET WINDOW	
25		READ CAPACITY	
25		READ CD-ROM CAPACITY	
26			
27			
28		GET MESSAGE(10)	
		READ(10)	
29	V VV O	READ GENERATION	
2A	0	SEND MESSAGE(10)	
2A	0	SEND(10)	
2A	M M M	WRITE(10)	
2B	0	LOCATE	
2B	0	POSITION TO ELEMENT	
2B	0 00 0	SEEK(10)	
2C	V O	ERASE(10)	
2D	V 0 0	READ UPDATED BLOCK	
2E	0 0 0	WRITE AND VERIFY(10)	
2F	0 00 0	VERIFY(10)	
30	0 00 0	SEARCH DATA HIGH(10)	
31	0	OBJECT POSITION	
31	0 00 0	SEARCH DATA EQUAL(10)	
32	0 00 0	SEARCH DATA LOW(10)	
33	0 00 0	SET LIMITS(10)	
34	0	GET DATA BUFFER STATUS	
34	0 00 0	PRE-FETCH	
34	0	READ POSITION	
35	0 00 0	SYNCHRONIZE CACHE	
36	0 00 0	LOCK UNLOCK CACHE	
37	0 0	READ DEFECT DATA(10)	
38		MEDIUM SCAN	
	00000000		
		COPY AND VERIFY	
		WRITE BUFFER	
		READ BUFFER	
3D		UPDATE BLOCK	
	0 00 0		
	0 0 0		
+==========			

D	- DIRECI	ACCESS DEVICE	Device Column Key
.т	- SEQUE	NTIAL ACCESS DEVICE	M = Mandatory
	L - PRIN	ITER DEVICE	0 = Optional
	P - PRC	CESSOR DEVICE	V = Vendor Specific
		ITE ONCE READ MULTIPLE DEVICE	R = Reserved
		READ ONLY (CD-ROM) DEVICE	
		SCANNER DEVICE	
		OPTICAL MEMORY DEVICE	
•		- MEDIA CHANGER DEVICE C - COMMUNICATION DEVICE	
•			
	LPWRSOMC	2 Description	
		CHANGE DEFINITION	
41 O		WRITE SAME	
42		READ SUB-CHANNEL	
		READ TOC	
		READ HEADER	
	0	PLAY AUDIO(10)	
46 47	0	PLAY AUDIO MSF	
47	0	PLAY AUDIO TRACK INDEX	
		PLAY TRACK RELATIVE(10)	
4D	0	FLAI INACK (ELATIVE(10)	
4B	0	PAUSE RESUME	
4C 00) LOG SELECT	
4D 00	0000000) LOG SENSE	
4E			
4F			
50			
51			
52			
53			
54			
55 00	5 000000) MODE SELECT(10)	
50			
58			
59			
		MODE SENSE(10)	
5B	000000		
5C			
5D			
5E			
5F			

```
Table 365: (concluded)
```

			- MEDIA CHANGER DEVICE - COMMUNICATION DEVICE
			Description
A0	+		
A1			
A2			
A3			
A4			
A5			MOVE MEDIUM
A5	0		PLAY AUDIO(12)
A6		0	EXCHANGE MEDIUM
A7			
A8		0	GET MESSAGE(12)
A8			READ(12)
A9			PLAY TRACK RELATIVE(12)
AA			SEND MESSAGE(12)
AA	0	0	WRITE(12)
AB			
AC		0	ERASE(12)
AD			
AE			WRITE AND VERIFY(12)
AF			VERIFY(12)
в0			SEARCH DATA HIGH(12)
B1			SEARCH DATA EQUAL(12)
В2			SEARCH DATA LOW(12)
В3		0	SET LIMITS(12)
В4			
B5			
В5		0	REQUEST VOLUME ELEMENT ADDRESS
В6		_	
B6			SEND VOLUME TAG
B7		0	READ DEFECT DATA(12)
B8		~	
B8		0	READ ELEMENT STATUS
В9			
BA			
BB			
BC			
BD			
BE BF			

24. Example programs

Here is the C example program, which requests manufacturer/model and reports if a medium is loaded in the device.

```
#define DEVICE "/dev/sgc"
/* Example program to demonstrate the generic SCSI interface */
#include <stdio.h>
#include <unistd.h>
```

```
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <scsi/sq.h>
#define SCSI_OFF sizeof(struct sg_header)
int fd;
                                 /* SCSI device/file descriptor */
/* process a complete scsi cmd. Use the generic scsi interface. */
unsigned in_size, /* input data size */
unsigned char *i_buff, /* input buffer */
unsigned out size
                        unsigned out_size, /* output data size */
unsigned char *o_buff /* output buffer */
                        )
{
   int status = 0;
   struct sq_header *sq_hd;
   /* safety checks */
                               /* need a cmd_len != 0 */
   if (!cmd_len) return -1;
   if (!i_buff) return -1;
                                   /* need an input buffer != NULL */
#ifdef SG_BIG_BUFF
   if (SCSI_OFF + cmd_len + in_size > SG_BIG_BUFF) return -1;
   if (SCSI_OFF + out_size > SG_BIG_BUFF) return -1;
#else
   if (SCSI_OFF + cmd_len + in_size > 4096) return -1;
   if (SCSI_OFF + out_size > 4096) return -1;
#endif
   if (!o_buff) out_size = 0;
   /* generic scsi device header construction */
   sg_hd = (struct sg_header *) i_buff;
   sg_hd->reply_len = SCSI_OFF + out_size;
   sg_hd->twelve_byte = cmd_len == 12;
   sg_hd->result = 0;
#if
     0
   sg_hd->pack_len = SCSI_OFF + cmd_len + in_size; /* not necessary */
   sg_hd->other_flags; /* not used */
#endif
   /* send command */
   status = write( fd, i buff, SCSI OFF + cmd len + in size );
   if ( status < 0 || status != SCSI_OFF + cmd_len + in_size ||
                    sg_hd->result ) {
       /* some error happened */
       fprintf( stderr, "write(generic) result = 0x%x cmd = 0x%x\n",
                  sg_hd->result, i_buff[SCSI_OFF] );
       perror("");
       return status;
   }
   /* retrieve result */
   status = read( fd, o_buff, SCSI_OFF + out_size);
   if ( status < 0 || status != SCSI_OFF + out_size || sg_hd->result ) {
       /* some error happened */
       fprintf( stderr, "read(generic) result = 0x%x cmd = 0x%x\n",
```

```
sg_hd->result, o_buff[SCSI_OFF] );
         fprintf( stderr, "read(generic) sense "
                   sg_hd->sense_buffer[0], sg_hd->sense_buffer[1], sg_hd->sense_buffer[4], sg_hd->sense_buffer[4], sg_hd->sense_buffer[6], sg_hd->sense_buffer[6], sg_hd->sense_buffer[8], sg_hd->sense_buffer[10], sg_hd->sense_buffer[10], sg_hd->sense_buffer[10], sg_hd->sense_buffer[12], sg_hd->sense_buffer[12], sg_hd->sense_buffer[12], sg_hd->sense_buffer[12], sg_hd->sense_buffer[12], sg_hd->sense_buffer[13], sg_hd->sense_buffer[14], sg_hd->sense_buffer[15]);
         if (status < 0)
              perror("");
    }
     /* Look if we got what we expected to get */
    if (status == SCSI_OFF + out_size) status = 0; /* got them all */
    return status; /* 0 means no error */
}
#define INQUIRY_CMD
                           0x12
#define INQUIRY_CMDLEN 6
#define INQUIRY_REPLY_LEN 96
#define INQUIRY_VENDOR 8
                                     /* Offset in reply data to vendor name */
/* request vendor brand and model */
static unsigned char *Inquiry ( void )
{
  unsigned char Inqbuffer[ SCSI_OFF + INQUIRY_REPLY_LEN ];
  unsigned char cmdblk [ INQUIRY_CMDLEN ] =
       { INQUIRY_CMD, /* command */
                     0, /* lun/reserved */
                     0, /* page code */
                     0, /* reserved */
  INQUIRY_REPLY_LEN, /* allocation length */
                     0 };/* reserved/flag/link */
  memcpy( cmd + SCSI_OFF, cmdblk, sizeof(cmdblk) );
  /*
   * +----+
   * | struct sg_header | <- cmd
   * +----+
   * | copy of cmdblk | <- cmd + SCSI_OFF
   * +----+
   */
  if (handle_scsi_cmd(sizeof(cmdblk), 0, cmd,
                         sizeof(Inqbuffer) - SCSI_OFF, Inqbuffer )) {
       fprintf( stderr, "Inquiry failed\n" );
       exit(2);
  }
  return (Inqbuffer + SCSI_OFF);
}
#define TESTUNITREADY_CMD 0
#define TESTUNITREADY_CMDLEN 6
#define ADD_SENSECODE 12
#define ADD_SC_QUALIFIER 13
#define NO_MEDIA_SC 0x3a
#define NO_MEDIA_SCQ 0x00
```

```
int TestForMedium ( void )
{
 /* request READY status */
 static unsigned char cmdblk [TESTUNITREADY_CMDLEN] = {
     TESTUNITREADY_CMD, /* command */
                    0, /* lun/reserved */
                     0, /* reserved */
                     0, /* reserved */
                     0, /* reserved */
                     0};/* reserved */
 memcpy( cmd + SCSI_OFF, cmdblk, sizeof(cmdblk) );
  /*
  * +----+
  * | struct sg_header | <- cmd
  * +----+
  * | copy of cmdblk | <- cmd + SCSI_OFF
  * +----+
  */
  if (handle_scsi_cmd(sizeof(cmdblk), 0, cmd,
                    0, NULL)) {
     fprintf (stderr, "Test unit ready failed\n");
     exit(2);
  }
 return
  *(((struct sg_header*)cmd)->sense_buffer +ADD_SENSECODE) !=
                                                     NO_MEDIA_SC ||
  *(((struct sg_header*)cmd)->sense_buffer +ADD_SC_QUALIFIER) !=
                                                     NO_MEDIA_SCQ;
}
void main( void )
{
 fd = open(DEVICE, O_RDWR);
 if (fd < 0) {
   fprintf( stderr, "Need read/write permissions for "DEVICE".\n" );
   exit(1);
  }
 /* print some fields of the Inquiry result */
 printf( "%s\n", Inquiry() + INQUIRY_VENDOR );
 /* look if medium is loaded */
 if (!TestForMedium()) {
   printf("device is unloaded\n");
  } else {
   printf("device is loaded\n");
  }
}
```